
The integumentary system

Al-Farabi Kazakh National University Higher School of Medicine

LEARNING OUTCOMES

As a result of the lesson you will be able to:

- ☐ List the functions of the skin and relate them to its structure;
- ☐ Identify and name the following skin structures: epidermis, dermis (papillary and reticular layers), hair and hair follicle, sebaceous gland, and sweat gland.
- ☐ Describe the distribution and function of the epidermal appendages—sebaceous and ceruminous glands, sweat glands, hair, and nails.
- ☐ Describe the normal and pathological colors that the skin can have, and explain their causes;
- ☐ Describe the role of dermal circulation;

Overview

- **Integumentary System** consists of the skin and its accessory organshair, nails, and cutaneous glands
- most visible system and more attention paid to this organ system
- inspection of the skin, hair, and nails is significant part a physical exam
- skin is the most vulnerable organ
 exposed to radiation, trauma, infection, and injurious chemicals
- receives more medical treatment than any other organ system
- dermatology scientific study and medical treatment of the integumentary system

Structure of the Skin

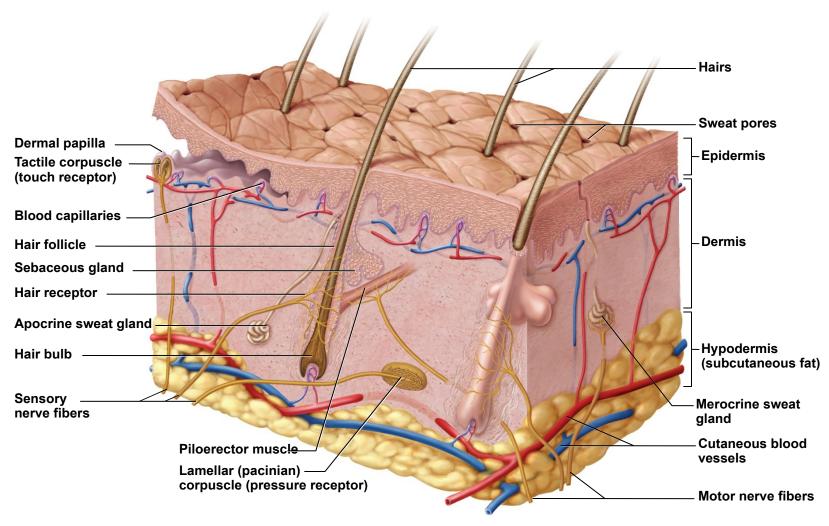


Figure 6.1

Skin and Subcutaneous Tissue


- the body's largest and heaviest organ
 - covers area of 1.5 -2.0 m²
 - 15 % of body weight
- consists of two layers:
 - epidermis stratified squamous epithelium
 - dermis connective tissue layer
- hypodermis another connective tissue layer below the dermis
- most skin is 1 2 mm thick
- ranges from 0.5 mm on eyelids to 6 mm between shoulder blades
- thick skin on palms and sole, and corresponding surfaces on fingers and toes
 - has sweat glands, but no hair follicles or sebaceous (oil) glands
 - epidermis 0.5 mm thick
- thin skin covers rest of the body
 - epidermis about 0.1 mm thick
 - possesses hair follicles, sebaceous glands and sweat glands

Functions of the Skin

- resistance to trauma and infection
 - keratin
 - acid mantle
- other barrier functions
 - waterproofing
 - UV radiation
 - harmful chemicals
- vitamin D synthesis
 - skin first step
 - liver and kidneys complete process

- sensation
 - skin is our most extensive sense organ
- thermoregulation
 - thermoreceptors
 - vasoconstriction / vasodilation
- nonverbal communication
 - acne, birthmark, or scar
- transdermal absorption
 - administration of certain drugs steadily through thin skin adhesive patches

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Epidermis

- epidermis keratinized stratified squamous epithelium
 - dead cells at the surface packed with tough protein – keratin
 - lacks blood vessels
 - depends on the diffusion of nutrients from underlying connective tissue
 - sparse nerve endings for touch and pain

Cells of Epidermis

- five types of cells of the epidermis
 - stem cells
 - undifferentiated cells that give rise to keratinocytes
 - in deepest layer of epidermis (stratum basale)

keratinocytes

- · great majority of epidermal cells
- synthesize keratin

melanocytes

- · occur only in stratum basale
- synthesize pigment melanin that shields DNA from ultraviolet radiation
- branched processes that spread among keratinocytes

- tactile (merkel) cells

- in basal layer of epidermis
- · touch receptor cells associated with dermal nerve fibers

- dendritic (langerhans) cells

- macrophages originating in bone marrow that guard against pathogens
- found in stratum spinosum and granulosum
- stand guard against toxins, microbes, and other pathogens that penetrate skin

Cell Types and Layers of the of the Epidermis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sweat pore Stratum corneum **Exfoliating** Stratum lucidum keratinocytes Stratum granulosum-**Dead keratinocytes** Sweat duct Living keratinocytes **Dendritic cell** Stratum spinosum Tactile cell Melanocyte Stem cell Stratum basale Dermal papilla Tactile nerve fiber **Dermis Dermal blood vessels**

Figure 6.3

Stratum Basale

- a single layer of cuboidal to low columnar stem cells and keratinocytes resting on the basement membrane
 - melanocytes and tactile cells are scattered among the stem cells and keratinocytes
- stem cells of stratum basale divide
 - give rise to keratinocytes that migrate toward skin surface
 - replace lost epidermal cells

Stratum Spinosum

- consists of several layers of keratinocytes
- thickest stratum in most skin
 - in thick skin, exceeded by stratum corneum
- deepest cells remain capable of mitosis
 - cease dividing as they are pushed upward
- produce more and more keratin filaments which causes cell to flatten
 - higher up in this stratum, the flatter the cells appear
- dendritic cells found throughout this stratum
- named for artificial appearance created in histological section
 - numerous desmosomes and cell shrinkage produces spiny appearance

Stratum Granulosum

consists of 3 to 5 layers flat keratinocytes

 contain coarse dark-staining keratohyalin granules

Stratum Lucidum

- seen only in thick skin
- thin translucent zone superficial to stratum granulosum
- keratinocytes are densely packed with eleidin
- cells have no nucleus or other organelles
- zone has a pale, featureless appearance with indistinct boundaries

Stratum Corneum

up to 30 layers of dead, scaly, keratinized cells

- form durable surface layer
 - surface cells flake off (exfoliate)
- resistant to abrasion, penetration, and water loss

Life History of Keratinocytes

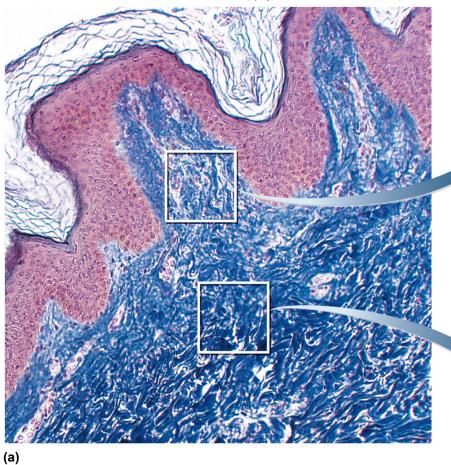
- keratinocytes are produced deep in the epidermis by stem cells in stratum basale
 - some deepest keratinocytes in stratum spinosum also multiply and increase their numbers
- mitosis requires an abundant supply of oxygen and nutrients
 - deep cells acquire from blood vessels in nearby dermis
 - once epidermal cells migrate more than two or three cells away from the dermis, their mitosis ceases
- newly formed keratinocytes push the older ones toward the surface

- in 30 40 days a keratinocyte makes its way to the skin surface and flakes off
 - slower in old age
 - faster in skin injured or stressed
 - calluses or corns thick accumulations of dead keratinocytes on the hands or feet
- cytoskeleton proliferates as cells are shoved upward
- cells grow flatter
- produce lipid-filled membrane-coating vesicles (lamellar granules)
- in stratum granulosum three important developments occur
 - keratinocyte nucleus and other organelles degenerate, cells die
 - keratohyalin granules release a protein filaggrin
 - binds the keratin filaments together into coarse, tough bundles
 - membrane-coating vesicles release lipid mixture that spreads out over cell surface and waterproofs it

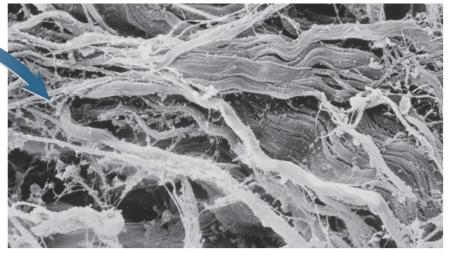
Epidermal Water Barrier

- epidermal water barrier forms between stratum granulosum and stratum spinosum
- consists of:
 - lipids secreted by keratinocytes
 - tight junctions between keratinocytes
 - thick layer of **insoluble protein** on the inner surfaces of the keratinocyte plasma membranes
- critical to retaining water in the body and preventing dehydration
- cells above the water barrier quickly die
 - barrier cuts them off from nutrients below
 - dead cells exfoliate (dander)
 - dandruff clumps of dander stuck together by sebum (oil)

Dermis

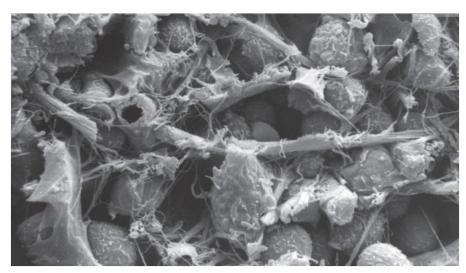

- dermis connective tissue layer beneath the epidermis
- ranges from 0.2 mm (eyelids) 4 mm (palms & soles)
- composed mainly of collagen with elastic fibers, reticular fibers, and fibroblasts
- well supplied with blood vessels, sweat glands, sebaceous glands, and nerve endings
- hair follicles and nail roots are embedded in dermis
- smooth muscle (piloerector muscles) associated with hair follicles
 - contract in response to stimuli, such as cold, fear, and touch goose bumps

Dermis


- dermal papillae upward fingerlike extensions of the dermis
 - friction ridges on fingertips that leave fingerprints
- papillary layer superficial zone of dermis
 - thin zone of areolar tissue in and near the dermal papilla
 - allows for mobility of leukocytes and other defense cells should epidermis become broken
 - rich in small blood vessels
- reticular layer deeper and much thicker layer of dermis
 - consists of dense, irregular connective tissue
 - stretch marks (striae) tears in the collagen fibers caused by stretching of the skin due to pregnancy or obesity

Structure of the Dermis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


(b) Papillary layer of dermis

(c) Reticular layer of dermis

Layers of Dermis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b) Papillary layer of dermis

(c) Reticular layer of dermis

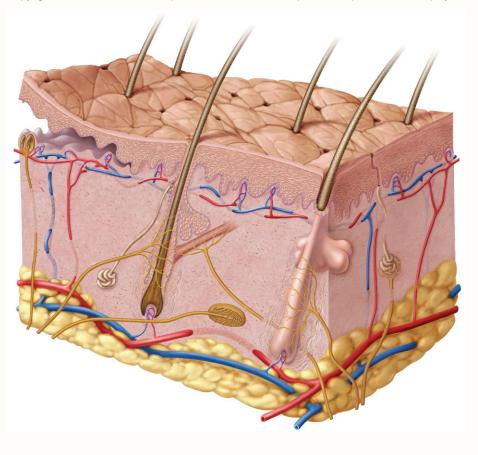

Copyright by R.G. Kessel and R.H. Kardon, *Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy*, 1979, W.H. Freeman, All rights reserved

Figure 6.5b

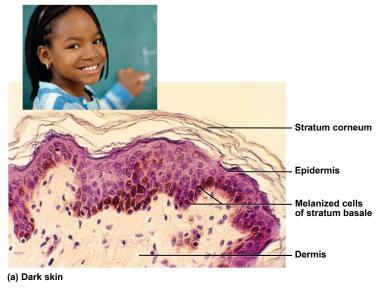
Figure 6.5c

Hypodermis

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- subcutaneous tissue
- more areolar and adipose than dermis
- pads body
- binds skin to underlying tissues
- drugs introduced by injection
 - highly vascular & absorbs them quickly
- subcutaneous fat
 - energy reservoir
 - thermal insulation
 - 8% thicker in women

Skin Color


- melanin most significant factor in skin color
 produced by melanocytes

 - accumulate in the keratinocytes of stratum basale and stratum spinosum
 - eumelanin brownish black
 - pheomelanin a reddish yellow sulfur-containing pigment
- people of different skin colors have the same number of melanocytes

 – dark skinned people
 - - produce greater quantities of melanin
 - · melanin ğranules in keratinocytes more spread out than tightly clumped
 - melanin breaks down more slowly
 - melanized cells seen throughout the epidermis
 - light skinned people
 - melanin clumped near keratinocyte nucleus
 - melanin breaks down more rapidly
 - little seen beyond stratum basale
- amount of melanin also varies with exposure to ultraviolet (UV) rays of sunlight

Other Factors in Skin Color

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© The McGraw-Hill Companies, Inc./Dennis Strete, photographer; b(inset): © Creatas/PunchStock

Stratum corneum

Epidermis

(b) Light skin

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© The McGraw-Hill Companies, Inc./Dennis Strete, photographer; a(inset): © Tom & Dee Ann McCarthy/Corbis

Figure 6.6b

Figure 6.6a

- hemoglobin red pigment of red blood cells
 - adds reddish to pinkish hue to skin
- carotene yellow pigment acquired from egg yolks and yellow/orange vegetables
 - concentrates in stratum corneum and subcutaneous fat

Abnormal Skin Colors

- cyanosis blueness of the skin from deficiency of oxygen in the circulating blood
 - airway obstruction (drowning or choking)
 - lung diseases (emphysema or respiratory arrest)
 - cold weather or cardiac arrest
- erythema abnormal redness of the skin due to dilated cutaneous vessels
 - exercise, hot weather, sunburn, anger, or embarrassment
- pallor pale or ashen color when there is so little blood flow through
 skin that the white color of dermal collagen shows through
 - emotional stress, low blood pressure, circulatory shock, cold, anemia
- albinism genetic lack of melanin that results in white hair, pale skin, and pink eyes
 - have inherited recessive, nonfunctional tyrosinase allele
- jaundice yellowing of skin and sclera due to excess of bilirubin in blood
 - cancer, hepatitis, cirrhosis, other compromised liver function
- hematoma (bruise) mass of clotted blood showing through skin

Evolution of Skin Color

- skin color one of the most conspicuous sign of human variation
- results from combination of evolutionary selection pressures
 - especially differences in exposure to ultraviolet radiation (UVR)
- UVR has two adverse effects:
 - causes skin cancer
 - breaks down folic acid needed for normal cell division, fertility, and fetal development
- UVR has a desirable effect:
 - stimulates synthesis of vitamin D necessary for dietary calcium absorption
- populations native to the tropics and their descendants tend to have well-melanized skin to screen out excessive UVR
- populations native to far northern or southern latitudes where the sunlight is weak, tend to have light skin to allow for adequate UVR penetration

Evolution of Skin Color

- ancestral skin color is a compromise between vitamin D and folic acid requirements
- women have skin averaging about 4% lighter than men
 - need greater amounts of vitamin D and folic acid to support pregnancy and lactation
- high altitude and dry air increases skin pigmentation
 - Andes, Tibet, Ethiopia
- UVR accounts for up to 77% of variation in human skin color
- other exceptions:
 - migration, cultural differences in clothing and shelter
 - intermarriage of people of different geographic ancestries
 - darwinian sexual selection a preference in mate choice for partners of or dark complexion

light

Skin Markings

- friction ridges the markings on the fingertips that leave oily fingerprints on surfaces we touch
 - everyone has a unique pattern formed during fetal development and remain unchanged throughout life
 - not even identical twins have identical fingerprints
 - allow manipulation of small objects
- flexion lines (flexion creases) lines on the flexor surfaces of the digits, palms, wrists, elbows
 - marks sites where the skin folds during flexion of the joints
- freckles and moles tan to black aggregations of melanocytes
 - freckles are flat, melanized patches
 - moles (nevus) are elevated melanized patches often with hair
 - molès should be watched for changes in color, diameter, or contour
 - may suggest malignancy (skin cancer)
- hemangiomas (birthmarks) patches of discolored skin caused by tumors of dermal blood capillaries
 - some disappear in childhood -- others last for life
 - capillary hemangiomas, cavernous hemangiomas, port-wine stain

Hair and Nails

- hair, nails, and cutaneous glands are accessory organs of the skin
- hair and nails are composed of mostly of dead, keratinized cells
 - pliable soft keratin makes up stratum corneum of skin
 - compact hard keratin makes up hair and nails
 - tougher and more compact due to numerous cross-linkages between keratin molecules
- pilus another name for hair
- pili plural of pilus
- hair a slender filament of keratinized cells that grows from an oblique tube in the skin called a hair follicle

Distribution of Human Hair

- hair is found almost everywhere on the body except:
 - palms and soles
 - ventral and lateral surface of fingers and toes
 - distal segment of the finger
 - lips, nipples, and parts of genitals
- limbs and trunk have 55 70 hairs per cm²
 - face about 10 times as many
 - 30,000 hairs in a man's beard
 - 100,000 hairs on an average person's scalp
 - number of hairs does not differ much from person to person or even between sexes
 - differences in appearance due to texture and pigmentation of the hair

Types of Human Hair

- Three kinds of hair grow over the course of our lives
 - lanugo fine, downy, unpigmented hair that appears on the fetus in the last three months of development
 - vellus fine, pale hair that replaces lanugo by time of birth
 - two-thirds of the hair of women
 - one-tenth of the hair of men
 - all of hair of children except eyebrows, eyelashes, and hair of the scalp
 - terminal longer, coarser, and usually more heavily pigmented
 - forms eyebrows, eyelashes, and the hair of the scalp
 - after puberty, forms the axillary and pubic hair
 - male facial hair and some of the hair on the trunk and limbs

Structure of Hair and Follicle

- Hair is divisible into three zones along its length
 - bulb a swelling at the base where hair originates in dermis or hypodermis
 - only living hair cells are in or near bulb
 - root the remainder of the hair in the follicle
 - shaft the portion above the skin surface
- dermal papilla bud of vascular connective tissue encased by bulb
 - provides the hair with its sole source of nutrition
- hair matrix region of mitotically active cells immediately above papilla
 - hair's growth center

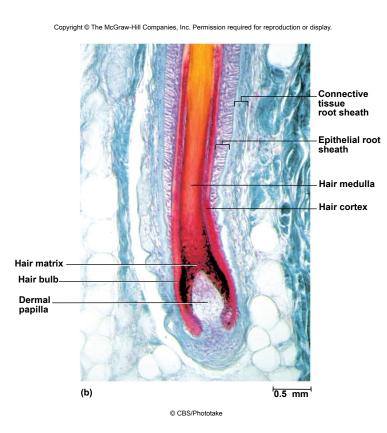


Figure 6.7b

Structure of Hair and Follicle

- three layers of the hair in crosssection from inside out
 - medulla
 - core of loosely arranged cells and air spaces
 - cortex
 - constitutes the bulk of the hair
 - consists of several layers of elongated keratinized cells
 - cuticle
 - composed of multiple layers of very thin, scaly cells that overlap each other
 - free edges directed upward

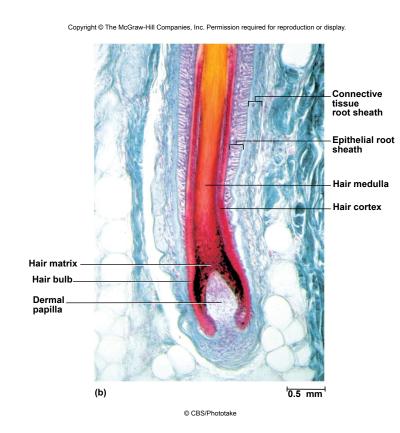
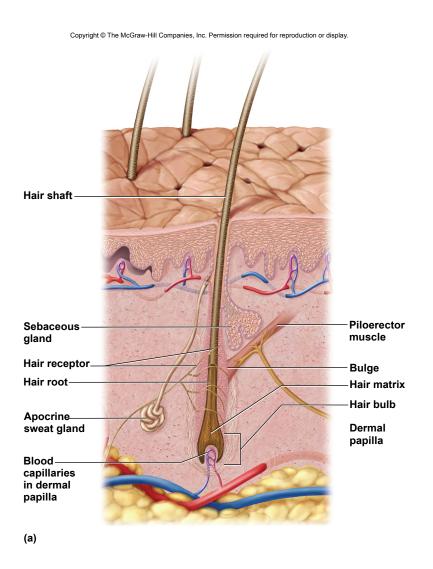



Figure 6.7b

Structure of Hair Follicle

- follicle diagonal tube that dips deeply into dermis and may extend into hypodermis
 - epithelial root sheath
 - extension of the epidermis
 - lies immediately adjacent to hair root
 - toward deep end widens into bulge a source of stem cells for follicular growth
 - connective tissue root sheath
 - · derived from dermis
 - · surrounds epithelial root sheath
 - · denser than adjacent connective tissue
- hair receptors
 - nerve fibers that entwine each follicle
 - respond to hair movement
- piloerector muscle (arrector pili)
 - bundles of smooth muscle cells
 - extends from dermal collagen to connective tissue root sheath
 - goose bumps

Hair Texture and Color

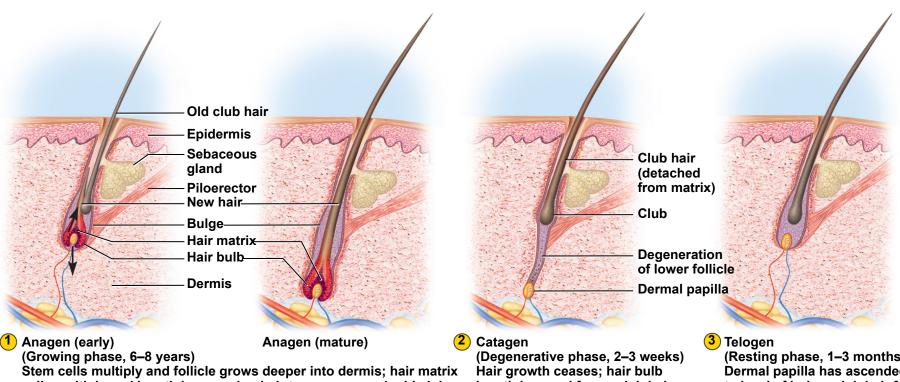
- texture related to differences in cross-sectional shape
 - straight hair is round
 - wavy hair is oval
 - curly hair is relatively flat
- color due to pigment granules in the cells of the cortex
 - brown and black hair is rich in eumelanin
 - red hair has a slight amount of eumelanin but a high concentration of pheomelanin
 - blond hair has an intermediate amount of pheomelanin and very little eumelanin
 - gray and white hair results from scarcity or absence of melanin in the cortex and the presence of air in the medulla

Hair Color and Texture

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hair Growth and Loss

- hair cycle consists of three developmental stages
 - anagen growth stage 90% of scalp follicles at any given time
 - stem cells multiply and travel downward
 - pushing dermal papilla deeper into skin forming epidermal root sheath
 - root sheath cells directly above dermal papilla form the hair matrix
 - sheath cells transform into hair cells, synthesize keratin, and die as they are pushed upward
 - new hair grows up the follicle, often alongside of an old club hair from the previous cycle
 - catagen degenerative stage mitosis in the hair matrix ceases and sheath cells below the bulge die
 - the follicle shrinks and the dermal papilla is drawn up toward the bulge
 - base of hair keratinizes into a hard club, and hair is now known club hair
 - loses its anchorage
 - easily pulled out by brushing
 - telogen resting stage when papilla reaches the bulge


as

Hair Growth and Loss

- club hair may fall out during catagen or telogen
 - or pushed out by new hair in the next anagen phase
- we lose about 50 100 scalp hairs daily
- in young adult the scalp follicles spend:
 - 6 8 years in anagen, 2 3 weeks in catagen, 1 2 months in telogen
- hair growth scalp hairs grow at a rate of 1 mm per 3 days (10 -18 cm/yr)
- alopecia thinning of the hair or baldness
- pattern baldness the condition in which hair loss from specific regions of the scalp rather than thinning uniformly
 - combination of genetic and hormonal influence
 - baldness allele is dominant in males and expressed only in high testosterone levels
 - testosterone causes terminal hair in scalp to be replaced by vellus hair
- hirsutism excessive or undesirable hairiness in areas that not usually hairy

Hair Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

cells multiply and keratinize, causing hair to grow upward; old club hair may persist temporarily alongside newly growing hair.

keratinizes and forms club hair; lower follicle degenerates.

(Resting phase, 1–3 months) Dermal papilla has ascended to level of bulge; club hair falls out, usually in telogen or next anagen.

Functions of Hair

- most hair on trunk and limbs is vestigial
 - little present function
 - warmth in ancestors
- hair receptors alert us of parasites crawling on skin
- scalp helps retain heat
- scalp protects against sunburn
- gender identification
- pubic and axillary hair signify sexual maturity and aids in transmission of sexual scents
- guard hairs (vibrissae) guard nostrils and ear canals
- eyelashes and eyebrows
- nonverbal communication

Fingernail Structure

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

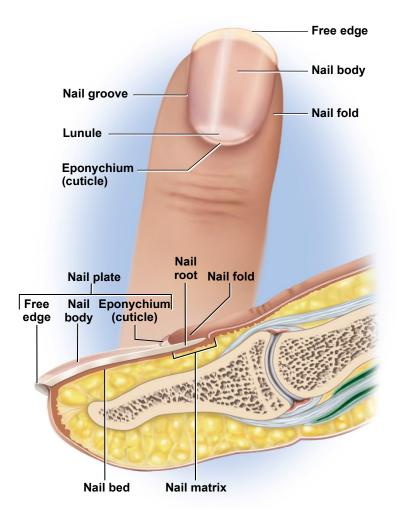


Figure 6.10

Nails

- fingernails and toenails clear, hard derivatives of the stratum corneum
- composed of very thin, dead cells packed with hard keratin
- flat nails allow for more fleshy and sensitive fingertips
 - tools for digging, grooming, picking apart food, and other manipulations
- nail plate hard part of the nail
 - free edge overhangs the finger tip
 - nail body visible attached part of nail
 - nail root extends proximally under overlying skin
- nail fold surrounding skin rising a bit above the nail
- nail groove separates nail fold from nail plate
- nail bed skin underlying the nail plate
- hyponychium epidermis of the nail bed
- nail matrix growth zone of thicken stratum basale at the proximal end of nail
 - mitosis here accounts for nail growth
 - 1 mm per week in fingernails, slightly slower on toenails
- lunule an opaque white crescent at proximal end of nail
- eponychium (cuticle) narrow zone of dead skin commonly

Cutaneous Glands

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 6.11a

the skin has five types of glands

- merocrine sweat glands
- apocrine sweat glands
- sebaceous glands
- ceruminous glands
- mammary glands

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Gland Hair follicle © The McGraw-Hill Companies, Inc./Joe DeGrandis, photographer

© The McGraw-Hill Companies, Inc./Joe DeGrandis, photographer

Figure 6.11c

(c) Sebaceous gland

© The McGraw-Hill Companies, Inc./Joe DeGrandis, photographer

Figure 6.11b

Sweat Glands (Sudoriferous)

- two kinds of sweat (sudoriferous) glands
 - merocrine (eccrine) sweat glands
 - most numerous skin glands 3 to 4 million in adult skin
 - are simple tubular glands
 - watery perspiration that helps cool the body
 - myoepithelial cells contract in response to stimulation by sympathetic nervous system and squeeze perspiration up the duct
 - apocrine sweat glands
 - occur in groin, anal region, axilla, areola, bearded area in mature males
 - ducts lead to nearby hair follicles
 - produce sweat that is thicker, milky, and contains fatty acids
 - scent glands that respond to stress and sexual stimulation
 - develop at puberty
 - pheromones chemicals that influence the physiology of behavior of other members of the species
 - bromhidrosis disagreeable body odor produced by bacterial action on fatty acids

Sweat

- sweat begins as a protein-free filtrate of blood plasma produced by deep secretory portion of gland
 - potassium ions, urea, lactic acid, ammonia, and some sodium chloride remain in the sweat, most sodium chloride reabsorbed by duct
 - some drugs are also excreted in sweat
 - on average, 99% water, with pH range of 4 to 6
 - acid mantle inhibits bacterial growth
 - insensible perspiration 500 ml per day
 - does not produce visible wetness of skin
 - diaphoresis sweating with wetness of the skin
 - exercise may lose one liter of sweat per hour

Sebaceous Glands

- sebum oily secretion produced by sebaceous glands
- flask-shaped glands with short ducts opening into hair follicle
- holocrine gland secretion consists of brokendown cells
 - replaced by mitosis at base of gland
- keeps skin and hair from becoming dry, brittle, and cracked
- lanolin sheep sebum

Ceruminous Glands

- found only in external ear canal
- their secretion combines with sebum and dead epithelial cells to form earwax (cerumen)
 - keep eardrum pliable
 - waterproofs the canal
 - kills bacteria
 - makes guard hairs of ear sticky to help block foreign particles from entering auditory canal
- simple, coiled tubular glands with ducts that lead to skin surface

Mammary Glands

- breasts (mammae) of both sexes contain very little glandular material
- mammary glands milk-producing glands that develop only during pregnancy and lactation
 - modified apocrine sweat gland
 - richer secretion released by ducts opening into the nipple
- mammary ridges or milk lines
 - two rows of mammary glands in most mammals
 - primates kept only anterior most glands
- additional nipples (polythelia)
 - may develop along milk line

Skin Cancer

- skin cancer induced by the ultraviolet rays of the sun
 - most often on the head and neck
 - most common in fair-skinned people and the elderly
 - one of the most common cancers
 - one of the easiest to treat
 - has one of the highest survival rates if detected and treated early
 - three types of skin cancer named for the epidermal cells in which they originate
 - basal cell carcinoma, squamous cell carcinoma, and malignant melanoma

Basal Cell Carcinoma

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Basal cell carcinoma

© NMSB/Custom Medical Stock Photo, Inc.

- most common type
- least dangerous because it seldom metastasizes
- forms from cells in stratum basale
- lesion is small shiny bump with central depression and beaded edges

Squamous Cell Carcinoma

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b) Squamous cell carcinoma

© Biophoto Associates/Photo Researchers, Inc.

- arise from keratinocytes from stratum spinosum
- lesions usually appear on scalp, ears, lower lip, or back of the hand
- have raised, reddened, scaly appearance later forming a concave ulcer
- chance of recovery good with early detection and surgical removal
- tends to metastasize to lymph nodes and may become lethal

Malignant Melanoma

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(c) Malignant melanoma

© James Stevenson/SPL/Photo Researchers, Inc.

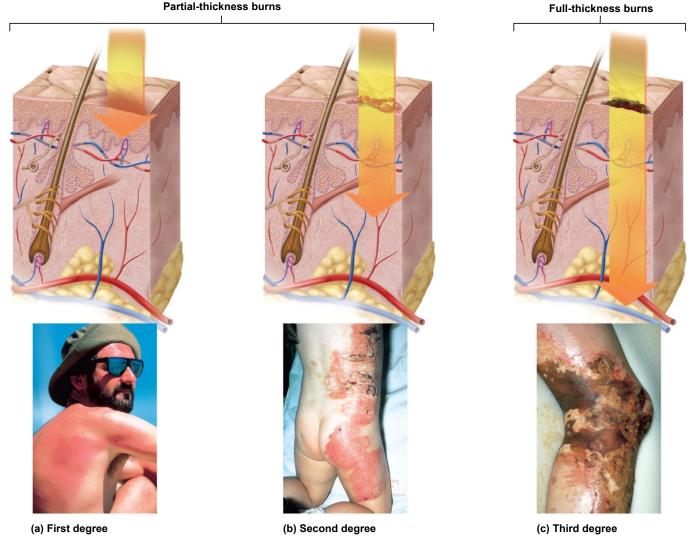
- skin cancer that arises from melanocytes
- often in a preexisting mole
- less than 5% of skin cancers, but most deadly form
- treated surgically if caught early
- metastasizes rapidly unresponsive to chemotherapy usually fatal
- person with metastatic melanoma lives only 6 months from diagnosis
- 5% 14% survive 5 years
- greatest risk factor familial history of malignant melanoma
- high incidence in men, redheads, people who experience severe sunburn in childhood

UVA, UVB and Sunscreens

- UVA and UVB are improperly called "tanning rays" and "burning rays"
- both thought to initiate skin cancer
- sunscreens protect you from sunburn but unsure if provide protection against cancer
 - chemical in sunscreen damage DNA and generate harmful free radicals

Burns

- **burns** leading cause of accidental death
 - fires, kitchen spills, sunlight, ionizing radiation, strong acids or bases, or electrical shock
 - deaths result primarily from fluid loss, infection and toxic effects of eschar – burned, dead tissue debridement – removal of eschar
- classified according to the depth of tissue involvementfirst-degree burns partial thickness burn involve only the epidermis
 - marked by redness, slight edema, and pain
 heal in a few days
 most sunburns are first degree burns


 - second-degree burns partial thickness burn involve the epidermis and part of the dermis

 leaves part of the dermis intact

 - red, tan, or white
 - two weeks to several months to heal and may leave scars
 - blistered and very painful
 - third-degree burn full thickness burn the epidermis and all of the dermis, and often some deeper tissues (muscles or bones) are destroyed
 - often require skin grafts
 - needs fluid replacement and infection control

Degrees of Burn Injuries

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

a: © SPL/Custom Medical Stock Photo, Inc.; b-c: © John Radcliffe/Photo Researchers, Inc.

Figure 6.13 55

Skin Grafts and Artificial Skin

- third-degree burns require skin grafts
- graft options
 - autograft tissue taken from another location on the same person's body
 - split-skin graft taking epidermis and part of the dermis from an undamaged area such as the thigh or buttocks and grafting it into the burned area
 - isograft skin from identical twin
- temporary grafts (immune system rejection)
 - homograft (allograft) -- from unrelated person
 - heterograft (xenograft) -- from another species
 - amnion from afterbirth
 - artificial skin from silicone and collagen